You can be very inventive with answers. i.e. he is bald. But when one reaches this age, there is usually a profusion of ear and nostril hair. it still requires cosmetic removal..
If you haven't figured it out.. there is no yes or no answer here.
If the Barber does not shave himself, he must shave himself.
If He shaves himself, he cannot shave himself.
Or ... there are two Barbers, both called the Barber! (I can't see the first post at the moment - did it say "one Barber"? Maybe every male is a barber and they all shave each other.)
Recommended Posts
Ham
You can be very inventive with answers. i.e. he is bald. But when one reaches this age, there is usually a profusion of ear and nostril hair. it still requires cosmetic removal..
Link to comment
Share on other sites
Ham
No answers yet? You must prove your claim..
Link to comment
Share on other sites
Ham
No thoughts?
let's put it in way terms.
da mog is in in charge of all of those not spiritually in charge of themselves.
Who is in charge of da mog?
I love this.. it is mathematics at it's finest, and it is in plain, ordinary English..
maybe this is the "answer" to the "sowers" dilemma.
You know, those put in charge. In charge of those who need to be held in charge..
Link to comment
Share on other sites
Ham
This kind of reasoning practically broke the intellectual back of the best that there was (is)
hey, it challenges "reality"..
the only possible reconciliation as far as logic and reality is concerned..
it bites off more than it can chew.
i.e. there is no Barber who is responsible for all male citizens..
there is no MOG in charge of mindless masses, who can not be held unaccountable to themselves..
there is no set, that is not a member of itself..
interesting, I hope?
this is really cool..
any time one stands up and says "I'm in charge.."
immediately he is clubbed to death (or she) by Russel's Paradox..
Link to comment
Share on other sites
Ham
it takes a while. But I'm learning to ask these questions in a more subtle manner..
Link to comment
Share on other sites
waysider
He suffers from a severe case of alopecia barbae.
OR
He doesn't suffer from a severe case of alopecia barbae.
Edited by waysiderLink to comment
Share on other sites
Ham
Weird, huh..
so what I am looking for..
why can't we have a GS Seance..
I am trying to understand Georg Cantor.
Link to comment
Share on other sites
Ham
I don't think our dear Mr. Cantor was subjected to..
Alopecia totalis
Link to comment
Share on other sites
waysider
Yeah, I see your point.
Godel, on the other hand....Well, who really knows?
Edited by waysiderLink to comment
Share on other sites
cara
Maybe he plucks. If he shaved himself while looking in a mirror, could that work? It's his image that's the focus, not himself ??
Link to comment
Share on other sites
Ham
very clever..
If you haven't figured it out.. there is no yes or no answer here.
If the Barber does not shave himself, he must shave himself.
If He shaves himself, he cannot shave himself.
Link to comment
Share on other sites
krys
maybe I could do it -- after all - - I used to be the shaver of THE!
Link to comment
Share on other sites
cara
Or ... there are two Barbers, both called the Barber! (I can't see the first post at the moment - did it say "one Barber"? Maybe every male is a barber and they all shave each other.)
Link to comment
Share on other sites
Ham
Very, very inventive and cunning. But there is only one barber. and the Barber is male.
Link to comment
Share on other sites
Ham
Goedel's mathematics was cool. It allowed people from past or future lives to send messages (i.e. ghosts) to him..
He proved that the continuum hypothesis and most of set theory was consistent..
This was one of Hilbert's big open questions.
Still not proved, or disproved.
We know so little..
I dunno. Theologically.. you might describe all of this as the *created* trying to explain the creator..
The one who finally can, wins the Boobie prize. Don't be too anxious. You will be left holding the bag..
so has anyone figured out the Barber of Seville thing?
maybe this is how a Trinity works..
It would be a fate, worse than proving Fermat's last (big) theorem..
Link to comment
Share on other sites
Ham
Andrew Wiles..
where does he go, from here..
Fermat claimed he had a glorious proof.. that he could not fit int the margins of his book..
then we find it takes about 200 or so pages of modern mathematics to really prove it..
The theorem is really very simple. x^n+y^n=z^n has no integer solutions for n greater than or equal to two..
so where are we at with the famed barber.. if he shaves himself, he cannot shave himself. If he shave himself, he cannot shave himself..
Edited by HamLink to comment
Share on other sites
waysider
Maybe a family of irate, fledgling Robins plucked out his whiskers.
Link to comment
Share on other sites
Twinky
I like men with neatly-trimmed beards.
Problem solved.
Nobody needs to shave.
Not even squirrels.
Link to comment
Share on other sites
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.